福井県知事 杉本 達治 様

要請書

関西電力高浜原子力発電所 1 ・ 2 号機及び美浜原子力発電所 3 号機の 運転再開同意の撤回を求めます

特に、高浜原子力発電所1号機は、事故時の原子炉容器脆性破壊のおそれが深刻です

提出者

老朽原発40年廃炉訴訟市民の会 共同代表 草地 妙子 茶畑 和也 愛知県名古屋市中区丸の内2丁目18-22三博ビル5F 名古屋第一法律事務所内

TEL: 080-9495-9414

E-mail: toold40citizens@gmail.com HP: http://toold-40-takahama.com/

私たちは、関西電力高浜原子力発電所1・2号機及び美浜原子力発電所3号機(以下、本件原発という)の運転期間延長認可等の取り消しを求める訴訟(名古屋地方裁判所)の原告とサポーターによる市民団体です。会員は600名以上で、原告には高浜町や美浜町の住民や福井県民を始め、関西、中部そのほか全国各地から参加しています。

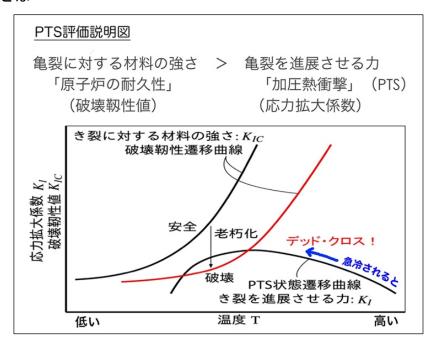
当会は2021年4月26日付けで貴職に対し、「緊急要請書 関西電力高浜原子力発電所1・2号機及び 美浜原子力発電所3号機の運転再開について同意しないでください 関西電力高浜原子力発電所1号機 の原子炉容器の監視試験片の原データの確認を原子力規制委員会に求めてください」を提出しましたが、 残念ながらご対応いただけないまま、本件原発運転再開への同意が表明されました。

また、昨年2022年8月2日付けで「関西電力高浜原子力発電所1・2号機及び美浜原子力発電所3号機の原子炉容器の中性子照射脆化の手抜き試験判明を踏まえ、運転再開同意について再考を求めます」と題する要請書を提出しましたが、ご再考いただけましたでしょうか。

この間、当訴訟において、原子炉容器の中性子照射脆化の評価・審査には重大な問題が数多くあること、特に高浜原子力発電所1号機は、適切に評価をやり直すと事故時の緊急冷却により原子炉容器の脆性破壊のおそれが示さることがより明確になりました。

■高浜1号機は全国の原発の中で最も原子炉容器の脆化が進んでいるとみられています

ご承知の通り、高浜1号機は、原発の心臓部である原子炉容器の中性子照射脆化(ちゅうせいししょうしゃぜいか:長年、中性子を浴び続けると原子炉容器の鋼鉄がもろくなる)が全国の原発の中で最も進んでいる数値が出ています。


原子炉容器の鋼鉄は、高い温度では延びて壊れ、低い温度ではねばり強さを失い、もろくなって割れて壊れますが、その境界の温度である脆性遷移温度(ぜいせいせんいおんど)が高浜 1 号機の原子炉容器は 9 9 \mathbb{C} と全国の原発で最も高いのです。脆性遷移温度は、脆化(もろくなること)が進むと上昇します。この 9 9 \mathbb{C} という数値が計測された監視試験片は、シャルピー試験片の母材、溶接金属、熱影響部の 3 種類のうち母材ですが、照射前の数値はマイナス 3 \mathbb{C} ほどですので、大きく脆化が進んでいることがわかります。

■規制基準で求められている PTS 評価とは

原子炉容器の中性子照射脆化の進み 具合を監視するために、原子炉容器と 同じ鋼材の監視試験片を炉内に入れて おいて、10年おきくらいに取り出して もろさの具合を調べます。

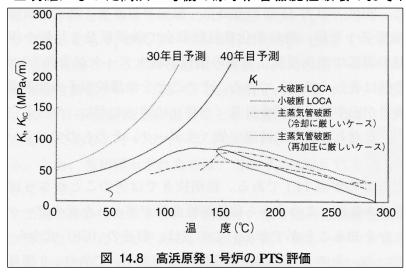
その結果と予測式などを使って、今後、運転を続けると原子炉容器がどのくらいもろくなるかを予測し、たとえ原子炉容器にひび割れがあっても、事故で原子炉が緊急冷却された時に破損しないかどうかを評価する決まりになっています。(2022 年 8 月 2 日付要請書参照)。

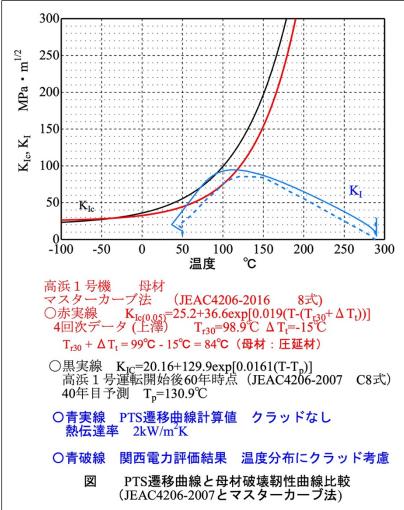
緊急時に原子炉容器が冷却水で一気 に冷やされ収縮した時に、外面との温

度差で強い引っ張り応力がかかります。これを加圧熱衝撃=PTSと呼び、上図の右下の右から左に山なりにカーブする曲線で示されます。

この時に内面にひび割れがあると、ひびを広げようとする力を受けますが、原子炉容器の鋼材がこの力に耐えられる靭性=粘り強さを評価した曲線が破壊靭性遷移曲線で、上図の左から右に上昇する曲線で示されます。中性子照射脆化で原子炉容器がもろくなると、破壊靭性遷移曲線は右にシフトします。原子炉容器にひび割れがあることを想定して、加圧熱衝撃(PTS)が、原子炉容器の粘り強さ(靭性)を上回らないか(デッド・クロスしないか)を評価します。デッド・クロスは原子炉容器の脆性破壊を意味します。

■当訴訟で明らかとなったずさんな試験や審査 集大成の意見書を書籍化


原子力規制委員会は、関西電力が行った本件原発の PTS 評価を妥当として運転期間延長認可を行いましたが、当訴訟では、原子力規制委員会が監視試験片の原データも確認せず、評価を左右する重要な設定条件となる熱伝達率の数値も確認せず、関西電力の評価結果をうのみにして認可していたこと、しかも、関西電力は、監視試験のうち破壊靭性試験は、10 年ごとの各取り出し回次に原子炉容器の母材と溶接金属の2種類の監視試験片のどちらかの種類しか試験していなかった(九州電力や四国電力は毎回の取り出しで両方とも試験している)という手抜き試験の実態を明らかにしてまいりました(2022 年 8 月 2 日付要請書参照)。


しかし、被告・国は、このような試験、審査に何ら問題はないと開き直っています。

これに対して、昨年 12 月の期日では、これまでもご協力いただいてきた井野博満さんをはじめとする原発老朽化問題研究会メンバーによる中性子照射脆化問題の集大成とも言える意見書を提出しました。中性子照射脆化の審査はここまで危ういものだったのかと恐ろしくなる内容です。意見書は当訴訟ホームページの訴訟資料に掲載しておりますので、ぜひお読みください。

なお、同研究会と原子力資料情報室、当弁護団、当会が協力して意見書を書籍化しまして、「原発の老朽化はこのように 圧力容器の中性子照射脆化を中心に」(2023 年 5 月 15 日 原子力資料情報室発行)を出版いたしました。弁護団による解説、専門用語のていねいな注記などを加え、さらに、電気ケーブルの劣化等他の老朽化問題等についても盛り込み、原発の老朽化問題についての必読書となりました。こちらもぜひお読みください。当会にご連絡いただけましたら進呈いたします。

■明確になった高浜1号機の原子炉容器脆性破壊のおそれ

昨年提出しました要請書において、関 西電力による高浜1号機の破壊靭性遷移 曲線の過小評価のおそれについてご説明 しました。左図は、関西電力が実施した 30年目時点と40年目時点における同じ 60年後予測の図です(詳細は昨年の要請 書をご覧ください)。

<破壊靭性遷移曲線の過小評価>

まず、左下から右上に延びる破壊靭性遷移曲線の過小評価について述べます。

破壊靭性試験はそもそもばらつきが 大きいのに、関西電力の場合は破壊靭 性試験片が1カプセル(1回の取り出 し分)に4点しか装荷されていないの で、得られたわずかなデータ(高浜1 号機は4回分合わせても9個)で下限 包絡曲線を描くという問題がある上に、 将来の脆化予測としてシフトする量は、 脆性遷移温度のシフト量と同じと仮定 されていますが、これが誤りであるこ とは近年の論文で立証されつつありま す。一方、欧米で主流となりつつある のがマスターカーブ法(その原発に限 らず他の全ての原発も含めた破壊靭性 値のデータを集めてきて、統計的に破 壊靭性遷移曲線を描く方法)で、実は、 原子力規制委員会が中性子照射脆化の 評価で採用している規格 JEAC を策定 する日本電気協会も、2016年版の規格 では精度を上げるために下限包絡曲線 を削除し、マスターカーブ法を取り入 れています(ただし、2016年版は規制 委では是認されませんでした)。この問 題については、意見書で詳しく解説し

ています。

当訴訟では、高浜1号機について、2016年版による破壊靭性遷移曲線を描くと左図のように、関西電力の評価した PTS 状態遷移曲線と接することも指摘しています(赤実線が 2016年版による評価、関西電力の PTS 状態遷移曲線は、青破線)。

<PTS 状態遷移曲線の過小評価>

また、図の右下の山なりにカーブしている PTS 状態遷移曲線についても、現行の規格ではクラッド(原子炉容器のステンレス製内張り)なしで評価することになっているのに、関西電力はクラッド

ありで評価していること(クラッドが断熱材の役割をするため過小評価になる)、使用する式の不合理性などいくつもの重要な問題があることを当訴訟で指摘してきました。PTS 評価で重要となる熱伝達率の数値を、原子力規制委員会が関西電力に確認していなかったことも訴訟の中で明らかとなりました。

そして、この熱伝達率の数値が関西電力からようやく提出されたのですが、驚くべきことに、解析に使った熱伝達率が残っておらず、あらためて計算したら同じような結果になったので、「大破断 LOCA (Loss of Coolant Accident=冷却材喪失事故)が生じてから 3600 秒までの間において、熱伝達率は約 1.6kW/(㎡ K) から約 2.5kW/(㎡ K)」で計算したと思われるとするものでした。

関西電力が示した熱伝達率の平均値 2kW/m³ K を使い、クラッドなしで PTS 評価をすると、関西電力の評価した破壊靭性遷移曲線であってもデッドクロスする結果となります(前図の黒実線が関西電力の評価、青実線がクラッドなし、熱伝達率 2kW/m³ K)。

<過小評価が重なり、深刻な脆化予測に。万が一を想定して保守的な評価をすべき>

破壊靭性遷移曲線と PTS 状態遷移曲線双方の過小評価の状況を合わせますと、高浜1号機は、確 実にデッドクロス (原子炉容器脆性破壊) する深刻な脆化が予測されています (赤実線と青実線)。

なお、PTS 評価においては、原子炉容器の内表面に深さ 10mm、長さ 60mm の半だ円表面欠陥があると想定して評価する決まりになっていますが、被告・国は、深さ 5mm 程度の欠陥は超音波探傷検査でわかるから、10mm は保守的だと主張しています。

しかし、2020年に大飯原子力発電所3号機で、前回の定期検査で把握できなかった重要配管の亀裂がかなり進展して見つかり、関西電力が進展予測をごまかして(1サイクル13ヶ月で評価すべきところ、1サイクル12ヶ月で評価)、次回定期検査まで大丈夫だからと配管を取り替えずに運転しようとして規制庁に叱られ、配管を取り替えたという問題がありました。見つけるべき大きさの亀裂を見逃したのか、検査で把握できない極小の亀裂が急激に進展したのか、どちらにしても、そのような事態も当然想定すべきです。超音波探傷の精度が高いとは言えないことも、意見書で指摘しています。

原子力規制委員会が採用する中性子照射脆化の評価法が決して保守的ではなく、最新の知見が取り入れられていないことをご理解いただき、原子力災害から福井県内外の住民を守るために、本件原発の運転再開同意を撤回してくださいますよう強く要請いたします。